像素3648
像素尺寸8μm
光栅焦距500mm
刻线2700 条 /mm
谱线范围130-640nm
分辨率优于 0.01nm
根据仪器的结构不同,又可分为多道直读光谱仪和全谱直读光谱仪,其中前者多采用光电倍增管作为器,后者多采用阵列器(如CCD).
随着CCD技术的不断发展,直读光谱仪开始朝小型化、全谱型方向发展.小型化仪器功耗小,占用空间小且易于维护;全谱直读光谱仪能够获得全波段范围内的光谱,满足多基体分析要求,谱线选择灵活,可以有效扣除光谱干扰,分析更准确,而多道直读光谱仪只能有限数量的光谱,很难做到这一点.
光谱仪是将复色光分离成光谱的光学仪器,又称分光仪,广泛为认知的为直读光谱仪。直读光谱仪所采用的原理是用电弧(或火花)的高温使样品中各元素从固态直接汽化并被激发而发射出各元素的特征波长,用光栅分光后,成为按波长排列的“光谱”,这些元素的特征光谱线通过出射狭缝,射入各自的光电倍增管或者是CCD等感应器,光信号变成电信号,经仪器的控制测量系统将电信号积分并进行模数转换,然后由计算机处理,并打印各元素的百分含量。
光谱分析仪器的分析的过程是将被测物质的试样引入光源中,给以外界的能量,使试样蒸发成气态原子,并且使气态原子的外层电子由低能态激发能态,处于高能 态的原子很不稳定要跃迁至基态或低能态,便产生了。由于被分析试样中含有不同的原子就会产生不同波长的,对于所产生经过摄谱仪进行分光就会在 感光板上得到按波长顺序排列的有规则的谱线,通过仪器的观察辨认各种特征波长的谱线存在情况就是光谱定性分析。如果用光谱分析仪器进一步测量就是光谱的定 量分析。
通常来说,光谱仪有三个重要组成部分:狭缝(Slit)、色散元件(Dispersive element)、器(Detector)。在光谱仪性能评价中,重要的评价指标之一便是色散能力(Dispersive power)。
简单而言,就是色散元件能够把复色光分散到多宽的范围上,光被分散地越宽,光谱仪的分辨率自然越好。
可以看到,焦平面越远,刻线越密,色散能力越强,后者受到光栅制作工艺限制,传统的光谱仪往往在上下功夫,这也是光谱仪做的比较大的原因。
然而,值得注意的是,你把光谱仪的分辨能力提得越高,虽然波长相近的光能够被区分地更好,但其代价就是一定长度的detector上所能展现的光谱范围变小了,所以,当光栅光谱仪发展到一定阶段后,人们发现重要的问题又出现在了器(detector)这一侧。
器
感光元件是直读光谱仪的核心,元器件的好坏关系到精密仪器的精度。直读光谱仪(OES)的核心元件有三种,一种是广泛使用的CCD(电荷耦合)元件;另一种是CMOS(互补金属氧化物半导体)器件,还有一种是PMT光电倍增管。
以上的器件都是光谱仪的核心器件,元件的质量对光谱仪的种类来说很重要。
http://lcyq.cn.b2b168.com