像素数3648+46
像素尺寸8μm
光栅焦距500mm
刻线2700 条 /mm
线分辨率0.7407nm/mm
像素分辨率0.005926nm
谱线范围130-800nm
全谱火花直读光谱仪的作用是什么?分析金属?我们为什么要分析金属?单纯为了知道每个元素的含量吗?当然不是。
不同含量的金属有不同的物理特性。各种金属小伙伴的屈服强度,延伸率,抗压轻度等等都不同,那么它们都将会运用在不同的领域中,分配到不同的岗位中去。
比如铁与钢,在专业中,铁是含碳量比较高的,比较脆的,断面和切口一般是灰色的金属。
钢呢?含碳量比较少,一般情况下比较有韧性,它会比较容易塑形,断面一般是银白色的。
在生活中它们一直被混淆,我们日常说的铁丝其实是低碳钢丝。怎么专业的分辨他们,看碳的含量。前面说到正因为碳的含量不同,所以它们的性质不同,所以一般碳含量小于2.11%的被称为钢,那么反之大于2.11%碳含量黑色金属被称为铁。
把材料的冶炼看做是炼金术,加入各种元素,合成不同性质的金属,但是我们的成品没有那么明显可以看出来成功没有,所以为了进一步对材料进行分析,全谱火花直读光谱仪出现了。当然不只是它,还有很多分析仪器小伙伴出现,比如红外线碳硫分析仪。
但是全谱火花直读光谱仪占据大部分市场,为何?因为他的一些优点让它在客户需求上有较大市场,使得它流通性广。
所以全谱火花直读光谱仪在铸造,冶炼以及其他金属加工企业中必不可少,作为一种分析手段,一下子可以测出多种元素的含量,成为在品质工艺上至关重要的工具
火花源光电直读原子发射光谱仪,通常简称为光电直读光谱仪,主要由激发光源、分光系统、信号测量转换系统等三大部分组成。世界上台商品化光电直读光谱仪于1946年问世。如今,光电直读光谱分析已成为一项成熟的分析技术,具有样品处理简单、分析速度快、分析精度高、多元素同时分析等特点,对于钢铁企业、有色金属企业及机械加工企业等的产品质量控制具有重要作用。据统计,当前中国有数以万计的光电直读光谱仪应用于金属行业及上下游产业,预计从事光电直读光谱分析的人员达数**之多。
光谱是复色光经过色散系统(如棱镜、光栅)分光后,被色散开的单色光按波长(或频率)大小而依次排列的图案,全称为光学频谱。光谱起源于17世纪,之后直到1859年克希霍夫和本生为了研究金属的光谱自己设计和制造了一种完善的分光装置--世界上台实用的光谱仪器。之后,伴随着光谱分析技术的成熟,光谱仪器得到迅速的发展。早的光源是火焰激发光谱,后来又发展为用简单的电弧和电火花为激发光源,在上世纪的三十、四十年代改进采用控制的电弧和电火花为激发光源,提高了光谱分析的稳定性。
我国于1965年引进光电直读光谱仪用于钢铁分析,那时国内还无法自主生产属于我们自己的光谱仪,钢研纳克则是在如此背景下靠着拼搏进取突破创新的精神,以创造世界的光谱仪为目标诞生的光谱仪研发、生产销售的企业。
CCD(Charge-Coupled Devices),即电荷耦合器件,它是一种以电荷包的形式存贮和传递信息的半导体表面器件,是1969年秋由美国贝尔(Bell)实验室的W.S.Boyle和G. E. Smith发明的。电荷耦合器件**的特点是以电荷作为信号,而其他大多数器件是以电流或电压作为信号。目前,CCD全谱直读光谱仪已经成为火花直读光谱仪的一个重要发展方向。
钢研纳仪器主要包含:直读光谱仪、碳硫分析仪、氧氮氢分析仪、ICP光谱仪、ICP-MS、土壤重金属仪、食品重金属仪、金属原位分析仪、试验机、环保设备、涡流探伤仪、超声波探伤仪等仪器装备,多款仪器填补国内外空白。
钢研纳克仪器,起源于钢铁研究总院(52年建院企业)。1991年伴随着台脉冲红外定氧仪的诞生,钢研纳克仪器产业正式起步,2006年7月,位于北京中关村永丰的仪器生产基地落成,占地面积 10096 平方米。承载着钢研纳克仪器的研发与生产的职能,同时也是钢铁研究总院分析测试技术领域成果转化基地。 “十二五”期间,公司仪器产业进军环境、生化、食品领域。形成了集金属材料全流程、食品药品、环境监测以及多介质中重金属于一体的业务体系,市场格局进一步优化。
-/gbahabe/-
http://lcyq.cn.b2b168.com