光学系统帕邢 - 龙格架发
光栅焦距750mm
刻线2400 条 /mm
谱线范围120-800nm
一级色散率0.55nm/mm
二级色散率0.275nm/mm
分辨率优于 0.01nm
钢研纳克每个仪器、每个部件都有编号记录,质量都是可以追溯的。零部件是**采购,如,光栅采购自法国JY、光电倍增管采购自日本滨松。公司每年都要对供应商进行一次评价,而且还要进行实地走访,“评价标准比ISO 9000还要严格,评价内容主要包括供应商的、产品质量标准、服务、价格等,只有全部通过才能进入公司合格供应商名单,才有供货,”袁良经说到,“一般都是业内的厂家。另外,我们采取的原则是一种产品通常有两家供应商,彼此之间有一定的竞争关系。”
对于采购的零部件不是简单的入厂检验,而是将钢研纳克对零部件的质量标准要求延伸到供货商,有时公司还会为一些供应商提供设备,双方用同样的设备和检验规程控制同样的参数。“光电直读光谱仪的每个关键部件都是必检的,即使钢研纳克没有查到,供应商也会检查到。”
加工精度要求高、需要数控机床加工、废品率高的火花台等核心部件,以及一些暂时采购不到的零部件,由钢研纳克自己的机加工车间进行生产,如建有洁净车间组装光学系统。另外,钢研纳克对于不同批次的零部件、老型号仪器的备件等也有相关的管理规定,不同批次的零部件会进行重点,并对批次进行跟踪;老型号仪器的备件库龄**过1年的定期进行检验。
通向各室的透镜,特别是通向空气室的透镜,由于试样激发时吹氩,使得试样曝光时产生的灰尘被吹至透镜上而阻止了光线的透过,影响测定结果的准确性。因此要经常清洗,一般一周两次,使其保持清洁,保证所有光线通过透镜而进入光室进行测定。特别提醒的是,清洗透镜后要多激发几个废样,等强度稳定后再进行标准化操作,否则对分析质量造成影响
光谱仪按照应用可分为:分子类光谱仪,原子类光谱仪
原子类光谱仪的按原理分为:原子发射光谱仪,原子吸收光谱仪,原子荧光光谱仪;
其中原子发射光谱仪又称为光电直读光谱仪;按照激发原理又分:火花直读光谱仪和电弧直读光谱仪;
根据光谱仪器的体积,光谱仪可以分为两大类:便携式光谱仪和台式(立式)光谱仪。光谱仪器按照器可分为:通道式光电倍增光PMT光谱仪和全谱CCD光谱仪。
直读光谱仪常见的桌面和两个垂直平面。直读光谱仪是广泛应用于铸造、钢铁、金属回收和精炼和军事工业、航空、电力、化工、高校和商品检验、质量控制等。
光谱起源于17世纪,1666年物理学家牛顿次进行了光的色散实验。他在暗室中引入一束太阳光,让它通过棱镜,在棱镜后面的自屏上,看到了红、橙、黄、绿、兰、靛、紫七种颜色的光分散在不同位置上——即形成一道彩虹。这种现象叫作光谱.这个实验就是光谱的起源,自牛顿以后,一直没有引起人们的注意。
经历了100多年的发展探索与研究,1859年克希霍夫和本生为了研究金属的光谱自己设计和制造了一种完善的分光装置,这个装置就是世界上台实用的光谱仪器,研究火焰、电火花中各种金属的谱线,从而建立了光谱分析的初步基础。直至1882年,罗兰发明了凹面光栅,即是把划痕直接刻在凹球面上。凹面光栅实际上是光学仪器成象系统元件的合为一体的元件,它解决了当时棱镜光谱仪所遇到的不可克服的困难。凹面光栅的问世不仅简化了光谱仪器的结构,而且还提高了它的性能。
1928年以后,由于光谱分析成了工业的分析方法,光谱仪器得到迅速的发展,一方面改善激发光源的稳定性,另一方面提高光谱仪器本身性能。
早的光源是火焰激发光谱;后来又发展应用简单的电弧和电火花为激发光源,在上世纪的三十、四十年代改进采用控制的电弧和电火花为激发光源,提高了光谱分析的稳定性。工业生产的发晨,光谱学的进步,促使光学仪器进一步得到改善,而后者又反作用于前者,促进了光谱学的发展和工业生产的发展。
六十年代光电直读光谱仪,随着计算机技术的发展开始迅速发展。由于计算机技术的发展,电子技术的发展,电子计算机的小型化及微处理机的出现和普及,成本降低等原因、于上世纪的七十年代光谱仪器几乎100%地采用计算机控制,这不仅提高了分析精度和速度,而且对分析结果的数据处理和分析过程实现自动化控制。
解放后,我国的光谱仪器工业从无到有,由小到大,得到飞跃的发展,且具有一定的规模,与技术竞争中求生存,社会商品竞赛中得到发展。
1958年开始试制光谱仪器,生产了我国台中型石英摄谱仪,大型摄谱仪,单色仪等。中科院光机所开始研究刻制光栅,59年上海光学仪器厂,63年北京光学仪器厂开始研究刻制光栅,63年研制光刻成功。1966—1968年北京光学仪器厂和上海光学仪器厂先后研制成功中型平面光栅摄谱仪和一米平面光栅摄谱仪及光电直读头。1971—1972年由北京*二光学仪器厂研究成功国内台WZG—200平面光栅光量计,结束了我国不能生产光电直读光谱仪的历史。
http://lcyq.cn.b2b168.com